

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

 DATAFLOW-BASED IMPLEMENTATION OF LAYERED SENSING APPLICATIONS

UNIVERSITY OF MARYLAND

MARCH 2011

FINAL TECHNICAL REPORT

AFRL-RI-RS-TR-2011-047

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for

any purpose other than Government procurement does not in any way obligate the U.S.

Government. The fact that the Government formulated or supplied the drawings,

specifications, or other data does not license the holder or any other person or corporation;

or convey any rights or permission to manufacture, use, or sell any patented invention that

may relate to them.

This report is the result of contracted fundamental research deemed exempt from public

affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec

08 and AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is

available to the general public, including foreign nationals. Copies may be obtained from

the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-047 HAS BEEN REVIEWED AND IS APPROVED FOR

PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

STANLEY LIS PAUL ANTONIK, Technical Advisor
Work Unit Manager Advanced Computing Division

 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its

publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

 March 2011
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

March 2010 – September 2010

4. TITLE AND SUBTITLE

DATAFLOW-BASED IMPLEMENTATION OF LAYERED SENSING

APPLICATIONS

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-10-1-0144

5c. PROGRAM ELEMENT NUMBER
T2KA

6. AUTHOR(S)
Shuvra Bhattacharyya

Chung-Ching Shen

William Plishker

Nimish Sane

Hsiang-Huang Wu

Ruirui Gu

5d. PROJECT NUMBER
UN

5e. TASK NUMBER
MD

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland

Office of Research Administration

3112 Lee Building

College Park MD 20742-5100

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate

Rome Research Site/RITB

525 Brooks Road

Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-047

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research

deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum

dated 10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes a new dataflow-based technology and associated design tools for high-productivity design, analysis, and

optimization of layered sensing software for signal processing systems. Our approach provides novel capabilities, based on the

principles of task-level dataflow analysis, for exploring and optimizing interactions across application behavior; operational context;

high performance embedded processing platforms, and implementation constraints. Particularly, we introduce and deliver novel

software tools, called the targeted dataflow interchange format (TDIF) and Dataflow Interchange Format Markup Language

(DIFML), for design and implementation of layered sensing and signal processing systems. The TDIF-CUDA (Compute Unified

Device Architecture) environment is a graphics processing unit targeted software synthesis tool that provides a unique integration of

dynamic dataflow modeling; retargetable actor construction; software synthesis; and instrumentation-based schedule evaluation and

tuning. The DIFML package is a software package for the DIFML format, which is an Extensible Markup Language (XML)-based

format for exchanging information between DIF and other tools.

15. SUBJECT TERMS

Signal processing; high performance; computer-aided design; layered sensing; dataflow.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

38

19a. NAME OF RESPONSIBLE PERSON

STANLEY LIS
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.

TABLE OF CONTENTS

1. Summary .. 1
2. Introduction ... 1
3. Methods, Assumptions, and Procedures .. 4
3.1. Application Programming Interface ... 4
3.1.1. The TDIF Language ... 4

3.1.2. Topological Context ... 5
3.1.3. Execution Context .. 5
3.1.4. FIFO Context ... 6
3.1.5. Design Template for Dataflow Actors .. 6

3.2. GPU-targeted Synthesis Tool ... 7
3.3. Library Components and Application Example .. 10

3.3.1. Application: Gaussian Filtering for Image Processing ... 10
3.3.2. Actor Design .. 11
3.3.3. Developing Schedulers .. 19

3.4. Instrumentation Techniques ... 20
3.4.1. Instrumented Schedule Trees .. 21

3.5. DIFML ... 23
3.5.1. XML format .. 23
3.5.2. The DIFML format ... 24
3.5.3. The DIFML Package .. 27

4. Results and Discussion ... 27
5. Conclusion ... 30
6. References ... 30
LIST OF ACRONYMS ... 31

i

LIST OF FIGURES

Figure 1: TDIF-based Design Flow 8

Figure 2: Application Graph for Image Processing Using Gaussian Filtering 9

Figure 3: TDIF Specification for the Gfilter Actor 9

Figure 4: TDIF Specification for the BMP_File_Read Actor 11

Figure 5: CFDF Modeling for the BMP_File_Read Actor 12

Figure 6: GST Representation of Canonical Schedule for the Application Graph in Figure 2 19

Figure 7: GST Representation for Schedules 21

Figure 8: Examples of IGSTs 22

Figure 9: (a) GST of Canonical Schedule for the Gaussian Filtering Application (b) The corresponding

IGST 23

Figure 10: Resuilts from Quick Mode Profiling 28

ii

LIST OF TABLES

Table 1: Performance Comparison for the Gfilter Actor Implemented in C and CUDA 28

Table 2: Performance Comparison for the Gaussian Filtering Application Implemented in C and CUDA

 29

iii

1. Summary

Below is a summary of accomplishments, listed by project task.

• API (Application Programming Interface) for GPU (Graphics Procesing Unit) Software:

Accomplished. The developed APIs include those available through the Targeted Dataflow

Interchange Format (TDIF) language that is used at compile time, and run-time APIs, such

as the topological context (TC), execution context (EC), and first-in-first-out (FIFO) APIs.

• GPU-Targeted Software Synthesis Tool: Accomplished. In this tool, actor-specific TDIF

files are parsed and APIs are generated for the corresponding actors. Actor designers can

then provide the associated implementation code (in C or CUDA (Compute Unified Device

Architecture)) based on the provided APIs. Furthermore, DIF (Dataflow Interchange

Format) files, which are specified in the DIF language, expose the high level dataflow

graph structure of the source application. DIF files are parsed by our tool, and a

corresponding top-level C file is generated that implements the input dataflow graph as

well as a header file that is provided for the designer to implement schedulers through a

standard interface.

• Library Components, Examples, and Demonstrations: Accomplished. A fundamental image

processing application centered around Gaussian filtering is demonstrated by using our

TDIF-based design and synthesis approach. A collection of dataflow library components

are developed to demonstrate this Gaussian filtering application.

• Instrumentation Techniques: Accomplished. To measure the performance of an actor

implementation in C and CUDA, our tool is capable of invoking measurement functions

provided by gcc and NVIDIA’s SDK (Software Development Kit) for CUDA. Our tool

provides measurement results by calling these functions during execution of an actor firing.

In addition to demonstrating execution performance, bandwidth and memory management

efficiency are also evlauated.

• DIFML (Dataflow Interchange Format Markup Language): Accomplished. DIFML is

designed as an XML (Extensible Markup Language)-based format for exchanging

information between the DIF language and other tools and languages, and more generally,

between arbitrary pairs of dataflow environments. The associated utility in the package is

designed to support bi-directional transformations between DIF files and DIFML files.

2. Introduction

Signal processing applications for layered sensing can often be described in terms of signal

processing block diagrams. In early design stages, system blocks are treated as ―black boxes,‖ and

designers focus on defining application specifications and features at a high level of abstraction.

Approved for Public Release; Distribution Unlimited.

 1

After a target platform is chosen, system blocks are manually transcoded, and the resulting

implementations are tuned to match the platform. Such a design process, from an initial

application description to a final implementation, often consists of several complex design steps

that are linked by different design languages and tools, and ad-hoc transcoding processes. While

targeting heterogeneous, high performance design platforms, such a process tends to be more

error-prone and time-consuming due to the need for efficient coordination across different

processor types. Therefore, a cross-platform design environment is needed that provides

capabilities for the designer to experiment with key design phases — ranging from early design

exploration to final implementation tuning — on different platforms.

Model-based design methods based on dataflow models of computation have become

increasingly popular to provide formal semantics for such block diagrams because of their natural

correspondence to signal flow graphs and system level DSP (Digital Signal Processing) flows.

Consequently, dataflow graphs are widely used to model applications in many signal processing

domains (e.g., see [1]).

In dataflow models of computation, signal processing applications are modeled as directed

graphs, where vertices (actors) represent computational modules for executing (or firing)

functional tasks, and edges represent first-in-first-out (FIFO) channels for storing data values

(tokens), and imposing data dependencies between actors. Whenever an actor fires, it produces

and consumes tokens from its input and output edges, respectively.

Nowadays, the most popular way of generating code for high performance GPUs is through

using low level specialized languages or APIs. When graphics cards were used only for graphics,

programmers used OpenGL (Open Graphics Library) or shader languages like Cg (C for

Graphics). But as more general purpose programs became supported, general purpose languages

like CUDA or Close to Metal (now in Stream Computing SDK) have thrived for NVIDIA and

AMD (ATI), respectively. These languages are C variants giving programmers a familiar front

end, while restricting some C features and introducing GPU specific constructs. These allow

designers the best opportunity for maximum performance as little of the architecture is abstracted.

But they do create a time consuming design process due to difficult design decisions. The

resulting code has limited portability and must be re-tuned for different or newer architectures.

OpenCL (Open Computing Language) provides a more portable (but not much higher level) way

of describing a multicore application, but at the expense of performance.

Developing applications for GPUs from higher level descriptions has been an important point

of research in recent years. Streaming languages like Brook and StreamIT target GPUs using high

level streaming constructs. Streaming languages leverage the parallelism within a stream and the

flexibility to consume and produce an arbitrary number of tokens to maximize memory

bandwidth and balance compute and input/output. When the application matches the streaming

model, these approaches can work well, but they often suffer from being too restrictive, while not

being able to tap into compiler advances from the low level program approaches. In order to tap

more into the performance potential, recently researchers at NC State have worked to raise the

abstraction level of CUDA by enabling designers to not specify certain design parameters that tie

a kernel to a specific GPU. This ―Naive CUDA‖ can then be more portable and reduce the burden

on designers. However applications must still be structured in a CUDA specific way.

The dataflow based approach used in this project is unique by leveraging the power of

dataflow models, but still allowing low level customizations. It provides a more flexible

framework without compromising on the types of optimizations possible by offering a breadth of

formal models for the application designer to choose from. This application description is then

tied as closely as possible to the application domain, not the target, making it highly portable

Approved for Public Release; Distribution Unlimited.

 2

while still structured enough to be optimized for. Furthermore, individual actors can still be tuned

using low level techniques. These additional models will also open the high level application

descriptions to a wider gamut of application domains. This work lays the foundation for such an

approach.

The Dataflow Interchange Format (DIF) framework provides a standard approach for

specifying mixed-grain dataflow-based semantics for signal processing system design [2]. The

DIF Language (TDL), which is part of the DIF framework, provides a unified textual language

for expressing different kinds of dataflow semantics, including graph topologies, hierarchical

design structure, dataflow-related design properties, and actor-specific information. TDL is

therefore suitable for both programming and interchange (transfer of dataflow graphs across

design tools). By using TDL, signal processing systems can be represented as dataflow graphs at

a high level of abstraction.

The DIF package (TDP) is a software tool that accompanies TDL, and provides a variety of

intermediate representations, analysis techniques, and graph transformations that are useful for

working with dataflow graphs. With the support of module libraries for the actors referenced in a

dataflow graph, an efficient software implementation for the graph can be synthesized

automatically using the DIF-to-C tool [2]. Although DIF-to-C supports only static dataflow

applications — in particular, those that are based on synchronous dataflow (SDF) semantics [3]

— the tool is capable of exploring a wide range of useful implementation trade-offs that are

exposed effectively through DIF-based dataflow representations.

In this project, we develop new dataflow-based technology and associated design tool, called

the targeted dataflow interchange format (TDIF), for high-productivity, high-confidence design

and optimization of layered sensing software. TDIF-CUDA is a specialized variant of TDIF that

is geared towards GPU-based implementation. TDIF-CUDA provides a new GPU-targeted

software synthesis environment for generating software implementations that can be compiled

onto CUDA-enabled GPU platforms.

TDIF extends the capabilities of DIF with dynamic dataflow software synthesis, cross-

platform actor design support, and dataflow-integrated features for instrumenting and tuning

implementations. More broadly, TDIF provides novel capabilities, based on the principles of task-

level dataflow analysis, for exploring and optimizing interactions across application behavior;

operational context; heterogeneous platforms, including high performance embedded processing

architectures; and implementation constraints. Our approach provides a formal basis for

systematic integration of embedded signal processing software on high performance platforms for

layered sensing and information processing.

We demonstrate the TDIF environment using a Gaussian filtering application for image

processing. We also describe how the designer can use the application programming interface

generated using the TDIF environment to design and develop libraries of actors associated with

application dataflow graphs as well as schedulers for executing the applications.

It is worth noting that there is no inherent restriction on the complexity of the application

specifications that can be handled by our tool. The allowable complexity of an implementation

that is derived from our tools is limited by the characteristics of the targeted GPU platform.

Furthermore, our tool can, in general, handle dataflow graphs that have both static and dynamic

application behavior. This is useful, for example, to support environmental awareness

functionality, where dynamic dataflow support is important.

Approved for Public Release; Distribution Unlimited.

 3

3. Methods, Assumptions, and Procedures

3.1. Application Programming Interface

3.1.1. The TDIF Language

In order to provide high-level specifications for writing dataflow actors that can be retargeted

across different platforms, we have developed a first version of a language called the TDIF

language. In our previous work, we developed preliminary underpinnings for TDIF and

associated demonstrations for application specific integrated circuit implementation based on the

Verilog hardware description language (HDL). TDIF is based on the core functional dataflow

(CFDF) [4] model of computation, which provides a generalized modeling framework that is

suitable for efficient representation, analysis, and scheduling of signal processing systems.

The TDIF language gives a high level specification format for writing dataflow actors that

can be efficiently and reliably retargeted across different platforms. The TDIF language is a light-

weight language that consists of five keywords: module, input, output, param, and mode.

A given actor specification should contain (at the beginning) a single module statement;

each of the other kinds of statements can be repeated as many times as needed for the given type

of structure being declared (e.g., two input statements and one output statement for a two-

input, single-output actor).

The keyword module defines an actor with name and type that specifies the targeted

language used to implement this actor. The syntax of module is:

module <type> <actor name>

For example,

module CUDA inner_product

defines an actor module named inner_product, and the targeted language for implementing this

actor is CUDA.

The keyword input defines input ports of an actor with names and token types with respect

to the associated FIFOs. The syntax of input is:

input <name of input port> <token type>

For example,

input input1 float

input input2 float

defines two input ports: input1 and input2 of an actor. Both types of tokens that are stored at

the associated FIFOs linked to input1 and input2 ports are floats.

Similarly, the keyword output defines output ports of an actor with names and token types

with respect to the associated FIFOs. The syntax of output is:

output <name of output port> <token type>

For example,

Approved for Public Release; Distribution Unlimited.

 4

output output1 float

defines one output port: output1 of an actor. The type of tokens that are stored at any FIFO

linked to output1 port is float.

The keyword param defines parameters of an actor with names and the associated parameter

types. The syntax of param is:

param <parameter name> <parameter type>

For example,

param X int

param Y float

param Z char

defines three parameters: X, Y, and Z of an actor. Types of these parameters are integer, floating

point, and character, respectively.

The keyword mode defines modes of an actor with names based on CFDF semantics. The

syntax of mode is:

mode <mode name>

For example,

mode INACTIVE

mode PROCESS

defines two modes: INACTIVE and PROCESS of a CFDF actor.

In the TDIF environment, an actor invocation has an operational context, which is

encapsulated by its execution context (EC), and a topological context (TC) or dataflow context,

which is encapsulated by a list or array of incident ports.

3.1.2. Topological Context

An actor’s topological context (TC) defines lists of input and output ports, along with their

associated FIFO buffers, for an actor. Functions that associate the given FIFO to the ports of a TC

are implemented as well as the functions that perform read and write operations to a TC at the

given ports.

We provide interfaces for using C-based TCs of actors. Implementation of these interfaces

has been integrated as part of the run-time library in the TDIF environment. Descriptions of these

interfaces are available in the delivered tdifc_tc.h.

3.1.3. Execution Context

An execution context (EC) includes a special state variable, which is common to all actors, and

keeps track of the current functional mode associated with the context; a special parameter, also

common to all actors, that implements the vectorization (block processing) degree of the context;

Approved for Public Release; Distribution Unlimited.

 5

function pointers for actor invocation, and data rate computation; the set of parameters for the

context; and the set of state variables for the context.

In an EC, two functions characterize execution of an actor, the invoke function, and data rate

computation function. Actor designers are required to follow the associated application

programming interfaces and provide specific implementations for both functions. This provides a

structured methodology for developing actors that can be formally integrated with the overall DIF

framework.

Checking for fireability (whether or not a dataflow actor has sufficient input data to perform

a quantum of computation) can be implemented automatically from knowledge of the current

actor mode, FIFO populations of the input ports, and date rate computation functions. Therefore,

fireability checking is not implemented by the actor designer nor stored separately for individual

actors. This architecture treats the invoke and data rate computation functions as additional

―special parameters‖ that can also conceivably be changed through dynamic parameter

management.

We provide interfaces for using C-based ECs of actors. Implementation of these interfaces

has been integrated as part of the run-time library in the TDIF environment. Descriptions of these

interfaces are available in the delivered tdifc_ec.h.

3.1.4. FIFO Context

A run-time FIFO library for communication between CUDA-based, GPU-targeted dataflow

actors has also been developed. This library includes both APIs and implementation code. Each

data item in the FIFO is referred to as a ―token‖. For a given FIFO instance, there is a fixed token

size (number of bytes per token). Tokens can have arbitrary data types — e.g., they can be

integers, floating point values (float or double), characters, or pointers (to any kind of data).

This organization allows for flexibility in storing different kinds of data values, and efficiency in

storing the data values directly (without being encapsulated in any sort of higher-level ―token‖

object).

We provide interfaces for using C-based dataflow FIFOs. Implementation of these interfaces

has been integrated as part of the run-time library in the TDIF environment. Descriptions of these

interfaces are available in the delivered tdifc_fifo.h.

3.1.5. Design Template for Dataflow Actors

In the TDIF environment, a well-structured design template is provided as an API for writing

dataflow actors based on the interfaces and run-time libraries for ECs and TCs. These templates

will be generated automatically after an associated tdif file is compiled. Here, <actor name>

indicates the placeholder of a name with respect to an actor.

The invoke function executes an actor instance of a library module with a given execution

context and a given topological context. The API of the invoke function is:

static void tdifcuda_lib_<actor name>_invoke(tdifc_tc_pointer tc,

 tdifc_ec_pointer ec);

Approved for Public Release; Distribution Unlimited.

 6

The production rate function enables querying of production rates with respect to the associated

modes in an actor. It returns the production rate for an actor at the given output port, and for the

given execution context. The API of the production rate function is:

static int tdifcuda_lib_<actor name>_prod_rate(int output_index,

 tdifc_ec_pointer ec);

Similarly, the consumption rate function enables querying of consumption rates with respect to

the associated modes in an actor. It returns the consumption rate for an actor at the given output

port, and for the given execution context. The API of the consumption rate function is:

static int tdifcuda_lib_<actor name>_cons_rate(int input_index,

 tdifc_ec_pointer ec);

Th initial design function initializes a designer-generated module (actor template). The API of the

initial design function is:

static void tdifcuda_lib_<actor name>_module_init_des(

void *args);

The free design function finalizes a designer-generated module (actor template). The API of the

free design function is:

static void tdifcuda_lib_gfilter_module_free_des(void);

It is worth noting that the run-time libraries for ECs, TCs, and FIFOs are implemented in C.

Therefore, as a naming convention, all file names in these run-time libraries are prefixed with

tdifc. For user-specified actors and schedulers, we use tdifcuda as a file name prefix

because they can be implemented in either C or CUDA, and CUDA can be employed as a

wrapper for C. At this level, for C-based actors, we are not dealing with kernel acceleration but

rather with overall schedule coordination.

3.2. GPU-targeted Synthesis Tool

The TDIF environment currently supports C- and GPU-based implementations (i.e., for CPU and

GPU platforms). The GPU-based capabilities of TDIF are currently oriented towards NVIDIA

GPUs, based on the CUDA programming framework [5]. Since CUDA is a C-like programming

language (CUDA can be viewed a variant of C with NVIDIA extensions and certain restrictions),

a C- or CUDA-based actor can be implemented as an abstract data type (ADT) to enable efficient

and convenient reuse of the actor across arbitrary applications. In typical C implementations,

ADT components include header files to represent definitions that are exported to application

developers and implementation files that contain implementation-specific definitions.

Approved for Public Release; Distribution Unlimited.

 7

Figure 1: TDIF-based Design Flow

An illustration of the TDIF environment and associated design flow is shown in Figure 1. By

following this methodology, the designer can focus on design implementation and optimization

for dataflow actors and experiment with alternative task scheduling strategies and instrumentation

techniques for the targeted platforms based on programming interfaces that are automatically

generated from the TDIF tool. These automatically-generated interfaces provide well-defined,

structured design templates for the designer to follow in order to generate dataflow-based actors

that are formally integrated into the overall synthesis tool. In Figure 1, the dashed line indicates

design considerations that need to be taken into account jointly to achieve maximum benefit from

TDIF-based system design.

The TDIF environment is based on four software packages — the TDIF compiler, TDIFSyn

(TDIF Synthesis) software synthesis package, TDIF run-time library, and Software Synthesis

Engine. The interactions among these packages are illustrated in Figure 1.

Approved for Public Release; Distribution Unlimited.

 8

Figure 2: Application Graph for Image Processing Using Gaussian Filtering

Figure 3: TDIF Specification for the Gfilter Actor

The TDIF compiler, which is developed based on the Bison compiler construction

framework [6], parses the TDIF specification of an actor and generates corresponding application

programming interfaces (APIs) for CFDF-based, dataflow implementation of the actor in the

targeted language. For C and CUDA, these APIs are generated in the form of header files for the

actor programmer to base his or her implementations on. The APIs provide standard prototypes

for interface functions, including the invoke function, which implements the functionality of the

actor, and two data rate functions that return the production rate and consumption rate,

respectively, associated with a given port and a given mode. The generated API features also

include relevant constant definitions associated with the dataflow actor, including the numbers of

input ports, output ports, modes, and parameters.

In the software deliverables for the project, the command that is used to perform CUDA-

oriented compilation for the TDIF language is

tdifcuda <input tdif file>

The compiler output includes auto-generated header files for a GPU-targeted actor.

The TDIFSyn package is a Java package that takes a DIF intermediate representation as input

from the DIF framework (e.g., a representation that has been constructed from a TDL file), and

generates a top-level C language implementation file and associated API for schedulers. Here, by

scheduling, we mean the assignment of dataflow actors to processors and the execution ordering

BMP File Read

Invert

BMP File Write

Gfilter

module CUDA gfilter

output output1 float

input input1 float

param tileX int

param tileY int

param filter size int

param grid size int

param block size int

mode init

mode filter

Approved for Public Release; Distribution Unlimited.

 9

of actors that share the same processor. Extensive prior work exists on scheduling dataflow

graphs for various purposes (e.g., see [1]). However, systematic techniques are lacking for

transferring the results of scheduling techniques into practical implementations. TDIFSyn helps to

bridge this gap by providing target-language-specific APIs through which scheduling results can

interact with the dataflow graph and its individual components.

The automatically generated top-level C file initializes the operational contexts of actors and

FIFOs (communication channels between actors), which have been described in Section 3.1;

configures actor parameters; lays out the graph topology by instantiating connections between

actor ports and their incident FIFOs; and calls a user-defined scheduler that is implemented based

on the generated scheduling API.

In the software deliverables for the project, the command that is used to compile the DIF

language and generate a top-level C file is

tdifsyn <input dif file> <output C file>

The generated C code implements the input dataflow graph and a header file for designers to

implement schedulers.

3.3. Library Components and Application Example

In Section 3.2, we have described our GPU-targeted synthesis tool, while in Section 3.1, we have

provided the details of associated APIs. In this section, we focus on how to use these interfaces to

develop libraries of actors, which can be systematically integrated with the overall TDIF-based

synthesis tool.

3.3.1. Application: Gaussian Filtering for Image Processing

We use a simple image processing application centered around Gaussian filtering to demonstrate

our TDIF-based design and synthesis approach. Figure 2 shows a graphical representation for

this application. A bitmap (BMP) image file is read by the source BMP_File_Read actor. This

actor converts the input image into a number of tiles that are smaller in size compared to the

original image. During its firing, the actor writes one of the tiles to the output buffer. The actors

Invert and Gfilter, which invert the input bitmap image and apply a Gaussian filter,

respectively, operate on input tokens that encapsulate tiles. The BMP_File_Write actor creates

an output bitmap image of a size equal to that of the original image using the processed tiles.

Two-dimensional Gaussian filtering is a common kernel in image processing used for

smoothing, denoising, etc. Filtering the image using a Gaussian filter involves a two-dimensional

convolution operation between the image and the filter. Such operations on image pixels are

attractive candidates for implementation on GPUs.

Approved for Public Release; Distribution Unlimited.

 10

Figure 4: TDIF Specification for the BMP_File_Read Actor

A TDIF specification for the Gfilter actor is shown in Figure 3. The actor specification is

parameterized to allow high level experimentation. This is reflected in the TDIF specification

shown Figure 3, where parameters are identified using the keyword param. Using the

parameterization features of the actor, the application designer can specify the number of tiles

into which the image should be divided along with the size of the filter. At the same time,

parameters specific to GPU implementation such as grid and block sizes can also be specified at a

high level.

To apply the Gaussian filtering actor to a tile, input data is padded with a limited

neighborhood around it (called a halo) depending upon the filter_size. Therefore, tiles

produced by BMP_File_Read overlap. The halo is discarded after Gaussian filtering. The main

processing pipeline in the graph is single-rate in terms of tiles and can be statically scheduled, but

after initialization and end of file behavior is modeled, there is conditional dataflow behavior in

the application graph.

3.3.2. Actor Design

We demonstrate actor code development using the BMP_File_Read actor. Figure 4 shows a

TDIF specification for this actor. This is a source actor, and hence, does not have any inputs

associated with it. We model this actor using the core functional dataflow (CFDF) model [4]. The

actor has three different modes init, read, and idle. The functionality associated with each

of these modes is described below. Note that the dataflow behavior, although fixed for a given

CFDF mode, can in general vary across different CFDF modes of the same actor.

As mentioned in Section 3.1, in the TDIF environment, CUDA can just serve as a wrapper

for C. Therefore, in a TDIF specification, we also can specify CUDA as the targeted language for

C-based actors, and at this level, we are not dealing with kernel acceleration but rather with

overall schedule coordination.

module CUDA bmp_file_read

output tile out float

output newrow out int

output bmpinfo out bmp_file_info

param file FILE

param tileX int

param tileY int

param halo int

mode init

mode read

mode idle

Approved for Public Release; Distribution Unlimited.

 11

Figure 5: CFDF Modeling for the BMP_File_Read Actor

When fired in the init mode, the BMP File Read actor sets the parameters specified in its

TDIF specification. It also reads the input bmp file specified by parameter file. This file

contains two components — information about the bmp file and the actual data representing the

image. In this mode, the actor outputs the bmp file information on its output bmpinfo_out. It

also allocates sufficient memory internally to store a tile of size (tileX+2×halo)×(tileY+2×halo).

It does not output anything on the other two outputs. It always returns the read mode as the next

mode in which the actor must be fired.

The BMP File Read actor when fired in the read mode, creates a tile of size tileX×tileY

from the original input image. It then pads this tile by halo number of rows and columns around

its edges. The actual values at these pixels are used during the padding. The tiles residing on the

outer borders of the image for which no data values are available for padding are zero-padded.

The actor outputs such padded tiles onto the output tile_out.

The image is processed row-wise starting from the tile containing the pixel located at index

(0,0) (the top-left corner of the image) and proceeding along the first row of the image. When the

last tile along the first row of the image is output, the tile with its top-left index coinciding with

pixel (tileX,0) in the original image is formed and output. A similar procedure is repeated until the

entire image is processed. The beginning of a new row of tiles is indicated by outputting 1 onto

the output newrow_out. A token with value 0 is output on this edge at all other times. This

mode always returns back to the same mode until the entire image has been processed, after

which it returns the idle mode as the next mode of firing.

The actor, when fired in the idle mode, performs no functional computation, and remains

in this mode unless forced by the scheduler to fire in a different mode. Figure 5 (a) shows the

dataflow behavior of the actor BMP_File_Read in all of its CFDF modes, while Figure 5 (b)

shows the possible mode transition behavior for the actor. The designer, who wants to develop the

code for a new actor in a library of actors, has to translate the dataflow and functional behavior of

an actor to appropriate methods available in the actor’s API listed in Section 3.1.5.

We remind the reader that each CFDF actor has fixed consumption and production rates for a

given mode. The methods

static int tdifcuda_lib_<actor name>_cons_rate(int input_index,

Mode Production rate (number of tokens)

 tile_out newrow_out bmpinfo_out

init 0 0 1

read 1 1 0

idle 0 0 0

 (a) Dataflow Behavior in CFDF Modes

(b) CFDF Mode Transition

init read idle

Approved for Public Release; Distribution Unlimited.

 12

 tdifc_ec_pointer ec);

and

static int tdifcuda_lib_<actor name>_prod_rate(int output_index,

 tdifc_ec_pointer ec);

return the number of tokens consumed and produced by the actor in a particular mode for the

specified input and output, respectively. The code for the method

tdifcuda_lib_bmp_file_read_prod_rate of the actor BMP_File_Read, for

example, is as shown below

static int tdifcuda_lib_bmp_file_read_prod_rate(int output_index,

 tdifc_ec_pointer ec) {

 int prod = 0;

if (tdifc_ec_get_mode(ec) ==

 TDIFC_LIB_BMP_FILE_READ_M_IDX_IDLE) {

} else if (tdifc_ec_get_mode(ec) ==

 TDIFC_LIB_BMP_FILE_READ_M_IDX_INIT) {

 if (output_index ==

 TDIFC_LIB_BMP_FILE_READ_O_IDX_BMPINFO_OUT) {

 prod = 1;

 }

 } else if (tdifc_ec_get_mode(ec) ==

 TDIFC_LIB_BMP_FILE_READ_M_IDX_READ) {

 if (output_index ==

 TDIFC_LIB_BMP_FILE_READ_O_IDX_TILE_OUT ||

 output_index ==

 TDIFC_LIB_BMP_FILE_READ_O_IDX_NEWROW_OUT) {

 prod = 1;

 }

 } else {

 tdifcuda_lib_bmp_file_read_invoke_error(

 “Invalid actor mode");

 }

 return prod;

}

The functionality of an actor in each of its CFDF modes is coded into the invoke method:

static void tdifcuda_lib_<actor name>_invoke(tdifc_tc_pointer tc,

 tdifc_ec_pointer ec);

Approved for Public Release; Distribution Unlimited.

 13

The designer must ensure that the code for this method conforms to the dataflow behavior of the

actor as specified by the associated production and consumption rate methods. The following

code implements the invoke method of the BMP_File_Read actor.

static void tdifcuda_lib_bmp_file_read_invoke(

 tdifc_tc_pointer tc, tdifc_ec_pointer ec) {

 int mode = TDIFC_MODE_NULL;

 int next_mode = TDIFC_MODE_NULL;

 static int tileX = 0;

 static int tileY = 0;

 static int halo = 0;

 FILE *file = NULL;

 int x = 0;

 int y = 0;

 int newrow = 0;

 static float *newtile = NULL;

 static bmp_file_info bmpinfo;

 static unsigned char *data = NULL;

 static int imgDimX = 0;

 static int imgDimY = 0;

 static int tileIndexX = 0;

 static int tileIndexY = 0;

 /* Perform the appropriate computation based on the current

 mode. */

 mode = tdifc_ec_get_mode(ec);

 if (mode == TDIFC_LIB_BMP_FILE_READ_M_IDX_INIT) {

 /* Read the header information from the bmp file */

 file = ((FILE *)tdifc_ec_get_param(ec,

 TDIFC_LIB_BMP_FILE_READ_P_IDX_FILE));

 fread(&(bmpinfo.bmptype), sizeof(unsigned short), 1,

 file);

 fread(&(bmpinfo.bmpheader), sizeof(bmp_file_header), 1,

 file);

 fread(bmpinfo.pallet, 4,

 bmpinfo.bmpheader.header.num_colors, file);

 data = malloc(bmpinfo.bmpheader.header.width *

 bmpinfo.bmpheader.header.height * sizeof(byte));

 /* Read the data from the bmp file */

 fread(data, sizeof(byte),

 bmpinfo.bmpheader.header.width *

Approved for Public Release; Distribution Unlimited.

 14

 bmpinfo.bmpheader.header.height, file);

 /* Get parameter values. */

 tileX = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_BMP_FILE_READ_P_IDX_TILEX));

 tileY = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_BMP_FILE_READ_P_IDX_TILEY));

 halo = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_BMP_FILE_READ_P_IDX_HALO));

 /* Dimensions in tiles - rounded down */

 imgDimX = bmpinfo.bmpheader.header.width / tileX;

 /* Dimensions in tiles - rounded down */

 imgDimY = bmpinfo.bmpheader.header.height / tileY;

 /* Form a new tile */

 newtile = malloc(sizeof(float) * (tileX + halo * 2) *

 (tileY + halo * 2));

 /* Write the output. */

 tdifc_tc_write(tc,

 TDIFC_LIB_BMP_FILE_READ_O_IDX_BMPINFO_OUT,

 &bmpinfo);

 next_mode = TDIFC_LIB_BMP_FILE_READ_M_IDX_READ;

 } else if (mode == TDIFC_LIB_BMP_FILE_READ_M_IDX_READ) {

 /* Form a new tile */

 newtile = malloc(sizeof(float) * (tileX + halo * 2) *

 (tileY + halo * 2));

 /* Assume the last index points to the right part of m

 emory */

 for (y = 0; y < tileY + 2 * halo; y++) {

 for (x = 0; x < tileX + 2 * halo; x++) {

 float val = 0;

 if (!((tileIndexX == 0) && (x < halo)) &&

 !((tileIndexY == 0) && (y < halo)) &&

 !((tileIndexX == imgDimX - 1) &&

 (x + 1 > halo + tileX)) &&

 !((tileIndexY == imgDimY - 1) &&

 (y + 1 > halo + tileY))) {

 val = data[(bmpinfo.bmpheader.header.width) *

 (tileIndexY * tileY + y - halo) +

 (tileIndexX * tileX + x - halo)];

 }

 newtile[(tileX + 2 * halo) * y + x] = val;

 }

 }

Approved for Public Release; Distribution Unlimited.

 15

 /* Check for new row */

 if (tileIndexX == imgDimX - 1) {

 newrow = 1;

 } else {

 newrow = 0;

 }

 /* Write to output buffers */

 tdifc_tc_write(tc,

 TDIFC_LIB_BMP_FILE_READ_O_IDX_TILE_OUT,

 &newtile);

 tdifc_tc_write(tc,

 TDIFC_LIB_BMP_FILE_READ_O_IDX_NEWROW_OUT,

 &newrow);

 /* Increment tile indices */

 tileIndexX++;

 if (tileIndexX >= imgDimX) {

 tileIndexX = 0;

 tileIndexY++;

 }

 /* Determine next mode */

 if (tileIndexY >= imgDimY) {

 next_mode = TDIFC_LIB_BMP_FILE_READ_M_IDX_IDLE;

 } else {

 next_mode = TDIFC_LIB_BMP_FILE_READ_M_IDX_READ;

 }

 } else if (mode == TDIFC_LIB_BMP_FILE_READ_M_IDX_IDLE) {

 next_mode = TDIFC_LIB_BMP_FILE_READ_M_IDX_IDLE;

 } else {

 tdifcuda_lib_bmp_file_read_invoke_error(

 "Invalid actor mode");

 }

 /* Set the next mode. */

 tdifc_ec_set_mode(ec, next_mode);

}

This method provides functionality for the core computational component of each CFDF actor

mode. The code for each of the CFDF modes consists of — (1) consuming the required number

of tokens (unless the actor is a source actor), from the input buffers; (2) processing any consumed

tokens; and (3) producing the required number of output tokens (unless the actor is a sink actor)

onto the output buffers; and (4) returning the next mode in which the actor should be fired. The

last component of the code effectively translates the mode transition behavior into the actual actor

design.

Approved for Public Release; Distribution Unlimited.

 16

We emphasize that code for certain types of actors may not have all of the first three

components. For example, a source actor does not have any input buffers, and correspondingly,

does not consume any tokens, while a sink actor does not have any outputs, and hence, produces

no tokens. As another example of an invoke method, we provide below CUDA code for the

invoke method of the Invert actor.

static void tdifcuda_lib_invert_invoke(tdifc_tc_pointer tc,

 tdifc_ec_pointer ec) {

 int mode = TDIFC_MODE_NULL;

 int next_mode = TDIFC_MODE_NULL;

 int tileX = 0;

 int tileY = 0;

 int grid_size = 0;

 int block_size = 0;

 static float *newtile = NULL;

 float *tile = NULL;

 float *d_in = 0;

 float *d_out = 0;

 /* Perform the appropriate computation based on the current

 mode. */

 mode = tdifc_ec_get_mode(ec);

 if (mode == TDIFC_LIB_INVERT_M_IDX_INIT) {

 tileX = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_INVERT_P_IDX_TILEX));

 tileY = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_INVERT_P_IDX_TILEY));

 newtile = (float*)malloc(sizeof(float) * tileX * tileY);

 next_mode = TDIFC_LIB_INVERT_M_IDX_INVERT;

 } else if (mode == TDIFC_LIB_INVERT_M_IDX_INVERT) {

 /* Get parameter values and inputs. */

 tileX = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_INVERT_P_IDX_TILEX));

 tileY = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_INVERT_P_IDX_TILEY));

 grid_size = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_INVERT_P_IDX_GRID_SIZE));

 block_size = *((int *)tdifc_ec_get_param(ec,

 TDIFC_LIB_INVERT_P_IDX_BLOCK_SIZE));

 tdifc_tc_read(tc, TDIFC_LIB_INVERT_I_IDX_INPUT1, &tile);

 cutilSafeCall(cudaMalloc((void**)&d_out, sizeof(float) *

 tileX * tileY));

 cutilSafeCall(cudaMalloc((void**)&d_in, sizeof(float) *

Approved for Public Release; Distribution Unlimited.

 17

 tileX * tileY));

 if (0 == newtile || 0 == d_in || 0 == d_out) {

 printf("Could not allocate memory: host = %p,

 device = %p\n", newtile, d_in);

 return;

 }

 cudaMemset(d_out, 0, sizeof(float) * tileX * tileY);

 cudaMemcpy(d_in, tile, sizeof(float) * tileX * tileY,

 cudaMemcpyHostToDevice);

 printf("%s\n", cudaGetErrorString(cudaGetLastError()));

 {

 dim3 grid;

 dim3 block;

 grid.x = grid_size;

 grid.y = grid_size;

 block.x = block_size;

 block.y = block_size;

 stencil<<<grid, block>>>(d_in, d_out);

 cudaMemcpy(newtile, d_out, sizeof(float) * tileX *

 tileY, cudaMemcpyDeviceToHost);

 }

 /* Write the output. */

 tdifc_tc_write(tc, TDIFC_LIB_INVERT_O_IDX_OUTPUT1,

 &newtile);

 next_mode = TDIFC_LIB_INVERT_M_IDX_INVERT;

 } else {

 tdifcuda_lib_invert_invoke_error("Invalid mode");

 }

 /* Set the next mode. */

 tdifc_ec_set_mode(ec, next_mode);

}

Approved for Public Release; Distribution Unlimited.

 18

3.3.3. Developing Schedulers

Figure 6: GST Representation of Canonical Schedule for the Application Graph in Figure 2

A scheduling transformation transforms an application dataflow graph into a representation that

contains a sequence of actor firings and associated control logic that can be used to execute the

dataflow graph. In CFDF graphs, the enable and invoke methods effectively allow executing

an actor in a given mode only if sufficient input data is available. Testing for such data

sufficiency is performed through run-time checks implemented using the enable method. A

guarded execution of a CFDF actor A is a single invocation of A that is conditional upon the

enable method first returning true. If A is not enabled for execution at a given point in time,

then a guarded execution of A at that time can be viewed as a NOP (no operation).

A simple scheduling transformation for CFDF, called the canonical scheduler, is one that

generates a guarded execution of every actor in the CFDF graph, and sequences these guarded

executions in some arbitrary order. The resulting schedule, called a canonical schedule, can then

be repeated until the entire input data set is processed, a required number of outputs is generated

or some other stopping criterion is met.

We represent a canonical schedule for the application shown in Figure 2 using a generalized

schedule tree (GST), as shown in Figure 6. GSTs provide a dataflow-model-independent

representation of schedules, which can be utilized as an input to subsequent stages of a design

flow, such as simulation and code synthesis [7]. An internal node of a GST denotes a loop count

(the number of times to execute the associated subtree), while a leaf node points to an actor. The

execution of a schedule involves traversing the GST in a depth-first manner, and during this

traversal, the sub-schedule rooted at any internal node is executed as many times as specified by

the loop count of that node. In the GST in Figure 6, double peripheries around leaf nodes indicate

guarded execution of the corresponding actors.

The following code demonstrates how a canonical schedule can be implemented.

/* Canonical schedule repeated for iter number of times */

for (i = 0; i < iter; i++) {

 /* Guarded execution of BMP file read */

 if (tdifc_ec_enable_check(tdifcuda_lib_bmp_file_read_ec,

 tdifcuda_lib_bmp_file_read_tc)) {

 tdifc_ec_invoke(tdifcuda_lib_bmp_file_read_ec,

 tdifcuda_lib_bmp_file_read_tc);

 }

1

BMP File Read Invert Gaussian Filter BMP File Write

Approved for Public Release; Distribution Unlimited.

 19

 /* Guarded execution of invert */

 if (tdifc_ec_enable_check(tdifcuda_lib_invert_ec,

 tdifcuda_lib_invert_tc)) {

 tdifc_ec_invoke(tdifcuda_lib_invert_ec,

 tdifcuda_lib_invert_tc);

 }

 /* Guarded execution of gfilter */

 if (tdifc_ec_enable_check(tdifcuda_lib_gfilter_ec,

 tdifcuda_lib_gfilter_tc)) {

 tdifc_ec_invoke(tdifcuda_lib_gfilter_ec,

 tdifcuda_lib_gfilter_tc);

 }

 /* Guarded execution of BMP file write */

 if (tdifc_ec_enable_check(tdifcuda_lib_bmp_file_write_ec,

 tdifcuda_lib_bmp_file_write_tc)) {

 tdifc_ec_invoke(tdifcuda_lib_bmp_file_write_ec,

 tdifcuda_lib_bmp_file_write_tc);

 }

}

In the TDIF environment, the designer has the flexibility to integrate, apply, and reuse more

sophisticated schedulers in the processes of design space exploration and implementation.

3.4. Instrumentation Techniques

Performance measurement of GPU-accelerated code must in general take into account overall

application performance, including the contributions due to any associated GPPs (general purpose

processors), and other types of processing resources in the target platform.

Our approach to performance measurement and instrumentation distinguishes between intra-

actor and inter-actor code performance, as well as performance of actor code as it executes on

different types of resources in a heterogeneous implementation platform. Orthogonal to the

optimization of CUDA actors on a GPU-enabled platform, scheduling determines the resource on

which each actor executes and the order of execution among actors that share the same processing

resource. Thus, scheduling typically has a significant impact on software synthesis quality. Given

a library of component modules (e.g., dataflow actors), and a formal application specification,

software synthesis selects a subset of modules and configures the interactions among them to

implement a given application.

Approved for Public Release; Distribution Unlimited.

 20

Figure 7: GST Representation for Schedules

In addition to performance, memory usage is often highly sensitive to scheduling decisions due to

the data-driven property of dataflow graph execution. We have developed instrumentation

methods to assess trade-offs between performance and memory usage and between intra-actor

and inter-actor code performance in implementations that are synthesized from DIF and TDIF

specifications. By applying these methods, designers can tune library module implementations as

well as strategies for scheduling and buffer management based on characteristics and constraints

of the given application and platform. Such tuning can be performed efficiently in our new

DIF/TDIF framework given the formal dataflow graph structure that is enforced by the

framework.

3.4.1. Instrumented Schedule Trees

Our approach to instrumentation in TDIF is designed to support the following key requirements:

(a) no change in functionality (instrumentation directives should not change application

functionality); (b) operations for adding and removing instrumentation points should be

performed by designers in a way that is external to actors (i.e., does not interfere with or require

modification of actor code); and (c) instrumentation operations should be modular so that they

can be mixed, matched, and migrated with ease and flexibility. Such a structured, dataflow-

integrated approach to instrumentation provides significant benefits compared to the ad-hoc

approaches to instrumentation that are typically used in multimedia system implementation.

Instrumentation support in TDIF builds on the generalized schedule tree (GST)

representation, which provides a standard graphical format for representing a broad class of

dataflow graph schedules [7]. In a GST, each leaf node refers to an actor invocation, and each

internal node n represents an expression that is interpreted as an iteration count I
n
 for the

associated sub-tree (that is, execution of the sub-tree rooted at n is repeated I
n
 times).

((3A(2BC)D)E(5F))

1

3

2

CB

A D

E 5

F

1

e1 e2
e3

3

BA C

D

A C

2

((3ABC)D(2AC))

Approved for Public Release; Distribution Unlimited.

 21

Figure 8: Examples of IGSTs

In its schedule tuning mode, TDIF allows designers to augment the GST representation

with functional modules, encapsulated as instrumentation nodes (INs), which are dedicated to

instrumentation tasks. Like iteration nodes, instrumentation nodes are incorporated as internal

nodes. We refer to GSTs that are augmented with instrumentation nodes as instrumented GSTs

(IGSTs). The instrumentation tasks associated with an instrumentation node are in general applied

to the corresponding IGST sub-tree. Figure 7 shows an example of two GSTs, and Figure 8

shows the example of IGSTs for the schedule ((3A(2BC)D)E(5F)). In Figure 8, M1… M5

represent instrumentation nodes.

An IGST allows software synthesis for a schedule together with instrumentation

functionality that is integrated in a precise and flexible format throughout the schedule. Upon

execution, software that is synthesized from an IGST produces profiling data (e.g., related to

memory usage, performance or power consumption) along with the output data that is generated

by the source application.

An instrumentation node in general has two associated functions, pre and post, which

represent instrumentation-related computations (e.g., system calls, accesses to specialized

memory locations, counter accesses, etc.) that are to be carried out just before and after,

respectively, the associated IGST sub-tree executes.

Depending on the desired instrumentation functionality, one or both of the functions pre and

post can be used. If both are used (e.g., for performance measurement), such an instrumentation

node can be viewed as providing interval instrumentation, whereas if only one is used (e.g., to

record memory usage), it can be viewed as point instrumentation.

Instrumentation nodes therefore provide a formal, dataflow-integrated approach for

specifying instrumentation functionality in a manner that flexibly interacts with but is cleanly

separated from the code (schedule and actor code) that it interacts with. Such orthogonalization

across scheduling, actor, and instrumentation functionality is a key strength of TDIF, which adds

to the modularity and productivity features offered by the environment.

((3A(2BC)D)E(5F))

E 5

1

F

M3

M5

B

3

DM4

2

C

A

E 5

1

F2

CB

A

M2

3

DM1

E 5

1

F

M2M1

M4M3

B C

(b)(a)

3

DM2

2A

(c)

Approved for Public Release; Distribution Unlimited.

 22

Figure 9: (a) GST of Canonical Schedule for the Gaussian Filtering Application (b) The

corresponding IGST

3.5. DIFML

We have developed a design for the DIFML format which is an XML-based format for

exchanging information between DIF and other tools and languages, and more generally, between

arbitrary pairs of dataflow environments. Associated software plug-ins for DIF have also been

implemented. There are different elements in the DIFML package, and these elements are listed

hierarchically when formulating DIFML descriptions. The element at the highest level is the

graph, while topology and interface are lower level elements. Under topology, there

are three elements at the same level: node, edge, and interface.

For each element, there are three kinds of attributes: implicitAttributes,

builtInAttributes and userDefinedAttributes. ImplicitAttributes are those

attributes necessary and inherent to the element, such as the id of a node. BuiltInAttributes are

attributes that are recognized as part of the DIF language, typically through corresponding

reserved words or other kinds of language constructs.

3.5.1. XML format

The extensible markup language, widely known as XML, is a markup language that was created

by the World Wide Web Consortium (W3C) to overcome limitations of HyperText Markup

Language (HTML). Like HTML, XML is based on SGML — the Standard Generalized Markup

Language. Although SGML has been used in the publishing industry for decades, its perceived

complexity intimidated many people that otherwise might have used it. XML was designed with

the Web in mind.

(b)

1

R I G W

(RIGW)

R: reader

I: inverter

G: gaussian filter

W: writer

1

R I W

M1

M2

G

(a)

Approved for Public Release; Distribution Unlimited.

 23

A major advantage of XML is that one can encode document information more precisely

compared to HTML. This means that programs processing these documents can ―understand‖

them much better and therefore process the information in ways that are not possible for ordinary

text processors.

One major application of XML is to make web pages with decent layout that are universally

accessible, regardless of browser type. XML also lets one check whether or not optional features

are present, and allows for invocation of alternative code to take care of cases where such features

are missing.

XML is a promising candidate for carrying data associated with high level text based

languages for subsequent use. XML itself is designed to be self-descriptive, which ensures that all

of the information from the original file can be understood by other applications. XML tags are

not predefined by users. It can be convenient for users to design appropriate tags to describe the

context of the information being exchanged.

Representing different languages using a common XML format allows for integrated use of

heterogeneous languages within a design flow, thereby allowing designers to combine the unique

strengths and features associated with different languages.

Interfacing between the DIF framework and other languages and tools can be achieved using

DIFML, which is an XML-based format associated with DIF.

3.5.2. The DIFML format

As described previously, the dataflow interchange format (DIF) is proposed as a standard

approach for specifying and integrating arbitrary dataflow-based semantics for DSP system

design [2], and The DIF language (TDL) is an accompanying textual design language for high-

level specification of signal-processing-oriented dataflow graphs.

In order to describe DIFML, we introduce a number of concepts associated with the general

XML format: node, element, attribute and tags. A node is a part of the hierarchical structure that

makes up an XML document. ―Node‖ is a generic term that applies to any type of XML

document object, including elements, attributes, comments, processing instructions, and plain

text. A tag is a markup construct that begins with < and ends with >. Tags come in three flavors:

start-tags, for example <section>, end-tags, for example </section>, and empty-element

tags, for example <line-break/>. An element is a logical component of a document. An

element either begins with a start-tag and ends with a matching end-tag, or consists only of an

empty-element tag. The characters between the start- and end-tags, if any, are the element’s

content, and may contain markup, including other elements, which are called ―child elements‖.

An attribute is a markup construct consisting of a name/value pair that exists within a start-tag or

empty-element tag.

DIFML is designed as an XML-based format for exchanging information between TDL and

other tools and languages, and more generally, between arbitrary pairs of dataflow environments.

There are different elements in DIFML and these elements are listed in a hierarchical way. The

element at the highest level is graph, while topology and interface are lower level

elements. Under topology, there are three elements at the same level: nodes, edges and

interface. For each element, there are three kinds of attributes: implicitAttributes,

builtInAttributes and userDefinedAttributes. ImplicitAttributes are those

attributes necessary and inherent to the element, such as the id of a node. BuiltInAttributes are

Approved for Public Release; Distribution Unlimited.

 24

attributes that are recognized as part of the DIF language, typically through corresponding

reserved words or other kinds of language constructs. For example, for an edge element in an

SDF model within a DIF graph (i.e., within a graph that is defined with the sdf keyword), there

are three kinds of builtInAttributes: the production rate, consumption rate, and delay.

UserDefinedAttributes are attributes that users add to selected elements at their own discretion.

The following is a simple example of an SDF model in the DIFML format. For conciseness, we

just show part of the associated DIFML file.

Approved for Public Release; Distribution Unlimited.

 25

<?xml version=' 1. 0 ' encoding='UTF−8 ' ?>
<difml xmlns=' http: //www. ece .umd . edu/DIFML '>

<graph>
<implicit Attributes>

<name val=' dat2cd ' />
<type val='SDFGraph ' />

</ implicit Attributes >
<topology>

<nodes>
<node>

< implicit Attributes >
<id val='A' />

</ implicit Attributes >
<builtInAttributes>

<nodeWeight type='DIFNodeWeight ' />
</ builtInAttributes >
<userDefinedAttributes>

<attribute name=' output ' type='Edge ' val=' e1 ' />
< attribute name=' readerFP ' type='DIFParameter ' val=' reade r ' />

</ userDefinedAttributes >
</node>

</nodes>
<edges>

<edge>
< implicit Attributes >

<id val=' e1 ' />
<sourceId val='A' />
<sinkId val='B' />

</ implicit Attributes>
<builtInAttributes>

<edgeWeight comsumption=' [2] ' delay=' 0 '
production=' [1] ' type='SDFEdgeWeight ' />

</ builtInAttributes>
</ edge>

</ edges>
</ topology>
<interface>

<port>
< implicit Attributes>

<direction id=' InA ' nodeId='A' val=' IN ' />
</ implicit Attributes>

</ port>
<port>

< implicit Attributes>
<direction id='OutE ' nodeId='E ' val='OUT' />

</ implicit Attributes>
</ por t>

</ interface>
</graph>

<!−−Automatically generated from DIF file−−>
</ difml>

Approved for Public Release; Distribution Unlimited.

 26

http://www.ece

As shown in the above example, each DIFML element contains an opening tag, a closing tag, and

some content. The opening tag begins with a left angle bracket (<), followed by an element name

that contains letters and numbers (but no spaces), and finishes with a right angle bracket (>).

Following the content is the closing tag, which exhibits the same spelling and capitalization as the

opening tag, but with one small change: a / appears right before the element name. Note that there

is an element named node. This name is in correspondence with the related definition in the DIF

language, and has different meaning with from the ―node‖ concept in XML terminology, which is

a generic concept that applies to any type of XML document object.

Currently, the DIFML parser supports several major dataflow models that are recognized in

the DIF language, including SDF [3], cyclo-static dataflow (CSDF) [8], core functional dataflow

(CFDF) [4], parameterized synchronous dataflow (PSDF) [9], CAL dataflow (CALDF) [10], and

multidimensional synchronous dataflow (MDSDF) [11].

3.5.3. The DIFML Package

The DIFML package is developed using Java and can be used for converting file formats between

DIF and DIFML. That is, given a DIF file based on a specific dataflow model, such as SDF or

CFDF, the DIFML package can transform it into the corresponding DIFML format and store the

output into a DIFML file (i.e., *.difml). On the other hand, given a DIFML file, the DIFML

package can transform it into the corresponding DIF format and store such format into a DIF file

(i.e., *.dif). The bridge between the DIF file and the DIFML file is the DIF intermediate

representation.

In the project deliverables, two commands are provided to transform between the DIF and

DIFML formats. To transform from the DIF format to the DIFML format, we have introduced

df2dfml:

df2dfml <input dif file>

The output will be stored in the file <file>.difml, where <file>.dif is the name of the

original DIF file.

Similarly, to transform from the DIFML format to the DIF format, we have introduced

dfml2df:

dfml2df <input difml file>

The output will be stored in the file <file>.dif, where <file>.difml is the name of the

original DIFML file.

4. Results and Discussion

The actor performance implemented in CUDA is tuned according to the profiling results

generated by CUDA Visual Profiler as well as theoretical analysis of the application. Some types

of schedules represented as GSTs can be generated, traversed and documented automatically by

the DIF package. Using such information, we specify where and what the instrumentation points

are in the GST, and insert those points into the corresponding software synthesis result manually.

Then, performance is measured after compiling the program and running the program with

relevant input data sets.

Approved for Public Release; Distribution Unlimited.

 27

To demonstrate how the TDIF scheduling-based instrumentation framework handles

instrumentation, we use five different filter sizes to configure the Gfilter actor and implement

the Gaussian filtering application, as shown in Figure 2, in C and CUDA. In addition to

performance measurement, we conduct experiments on memory management efficiency as well

as on trade-offs between performance and inter-actor context switch overhead. We will show later

in this section that the schedule can lead to greatly improved performance if it is well-tuned —

e.g., by allowing actors to fully utilize resources without unnecessary waiting.

We change the filter sizes for the Gfilter actor and denote them as 5X5, 11X11,

21X21, 25X25 and 37X37. The schedule shown in Figure 9 (a) contains references to the BMP_

File_Read and BMP_File_Write actors that are implemented in C, and Invert and

Gfilter actors that are implemented in CUDA. As illustrated in Figure 9 (b), two schedule

nodes, M1 and M2, are used for point instrumentation and interval instrumentation, respectively.

The IN M1 measures three types of bandwidth — Host to Device Bandwidth, Device to Host

Bandwidth and Device to Device Bandwidth — before the execution of the application. The IN

M2 monitors the execution time of the Gfilter actor.

Figure 10: Results from Quick Mode Profiling

Table 1: Performance Comparison for the Gfilter Actor Implemented in C and CUDA

Device 0: GeForce GTX 260

Host to Device Bandwidth, 1 Device(s), Paged memory
Transfer Size (Bytes) Bandwidth(MB/s)

33554432 1234.5

Device to Host Bandwidth, 1 Device(s), Paged memory
Transfer Size (Bytes) Bandwidth(MB/s)

33554432 960.7

Device to Device Bandwidth, 1 Device(s)
Transfer Size (Bytes) Bandwidth(MB/s)

33554432 97519.1

Filter size 5X5 11X11 21X21 25X25 37X37

CUDA (ms) 4.228 4.874 10.257 12.759 21.72

C (ms) 50 280 1080 1540 3310

Speed up 11.83 57.45 105.29 120.70 152.39

Approved for Public Release; Distribution Unlimited.

 28

Table 2: Performance Comparison for the Gaussian Filtering Application Implemented in

C and CUDA

As a key building block for constructing libraries of instrumentation nodes, point instrumentation

is a function with arguments for different measurement purposes. This function supports three

modes, which are relevant for bandwidth testing, as well as for testing of other performance

characteristics.

• Quick mode: performs a quick measurement.

• Range mode: measures a user-specified range of values.

• Shmoo mode: performs an intense shmoo of a large range of values.

To experiment in quick mode, M1 is specified to run a bandwidth test in quick mode, and the

corresponding function call is inserted into the IGST during software synthesis. Figure 10 shows

the measurement result for quick mode at the very beginning of execution. Even though the

underlying instrumentation function is restricted to run its bandwidth test in one of three modes

(during a given function call), the definition of M1 is flexible so that the function can be called

multiple times with different arguments if needed. The cooperation between M1 and the

corresponding IN implementation makes instrumentation convenient, flexible, and efficient.

Three main aspects affects the performance:

• The implementation of Gfilter;

• the memory usage (buffer requirement) for dataflow graph edges; and

• the schedule.

Given five different filter sizes for the Gfilter actor, our experiments involving performance

instrumentation include measurements of application performance and the performance on only

the Gfilter actor with GPU acceleration. Here, M1 is specified as an interval instrumentation

operation. This interval instrumentation operation measures overall application performance, and

M2 measures the performance of the Gfilter actor. As shown in Table 1, the CUDA

implementations exhibit superior performance compared to the corresponding C implementations

in these experiments.

 Table 2 provides a performance comparison for the overall Gaussian filtering application that is

implemented in C and CUDA. The application-level speedups, while still significant, are

consistently less than the corresponding actor-level speedups. This is due to factors such as

context switch overhead and communication cost for memory movement, which are associated

with overall schedule coordination in the application implementations.

Filter size 5X5 11X11 21X21 25X25 37X37

CUDA (ms) 70 80 140 115 130

C (ms) 70 295 1100 1550 3340

Speed up 1 3.69 7.86 13.48 25.69

Approved for Public Release; Distribution Unlimited.

 29

5. Conclusion

In this project, we have developed and delivered novel software tools for design and

implementation of layered sensing and signal processing systems. The Targeted DIF (TDIF)

environment is a GPU-targeted software synthesis tool, which is based on the dataflow

interchange format (DIF) framework, and provides a unique integration of dynamic dataflow

modeling; retargetable actor construction; software synthesis; and instrumentation-based schedule

evaluation and tuning. The DIFML package is a software package for the DIFML format, which

is an XML-based format for exchanging information between DIF and other tools and languages,

and more generally, between arbitrary pairs of dataflow environments. We have also presented

and delivered application case studies to demonstrate the utility of the TDIF and DIFML

environments.

6. References

[1] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds., Handbook of Signal

Processing Systems. Springer, 2010.

[2] C. Hsu, M. Ko, and S. S. Bhattacharyya, ―Software synthesis from the dataflow interchange

format,‖ in Proceedings of the International Workshop on Software and Compilers for

Embedded Systems, Dallas, Texas, September 2005, pp. 37–49.

[3] E. A. Lee and D. G. Messerschmitt, ―Synchronous dataflow,‖ Proceedings of the IEEE,

vol. 75, no. 9, pp. 1235–1245, September 1987.

[4] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, ―Functional DIF for

rapid prototyping,‖ in Proceedings of the International Symposium on Rapid System

Prototyping, Monterey, California, June 2008, pp. 17–23.

[5] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide, 2007. [Online].

Available:

http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Gu

ide_1.0.pdf

[6] C. Donnelly and R. Stallman, Bison – The Yacc-compatible Parser Generator, August 2010.

[7] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kienhuis, and E. Deprettere,

―Parameterized looped schedules for compact representation of execution sequences in DSP

hardware and software implementation,‖ IEEE Transactions on Signal Processing, vol. 55,

no. 6, pp. 3126–3138, June 2007.

[8] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, ―Cyclo-static dataflow,‖ IEEE

Transactions on Signal Processing, vol. 44, no. 2, pp. 397–408, February 1996.

[9] B. Bhattacharya and S. S. Bhattacharyya, ―Parameterized dataflow modeling for DSP

systems,‖ IEEE Transactions on Signal Processing, vol. 49, no. 10, pp. 2408–2421, October

2001.

[10] J. Eker and J. W. Janneck, ―CAL language report, language version 1.0 — document

edition 1,‖ Electronics Research Laboratory, University of California at Berkeley, Tech. Rep.

UCB/ERL M03/48, December 2003.

[11] E. A. Lee, ―Multidimensional streams rooted in dataflow,‖ in Proceedings of the IFIP

Working Conference on Architectures and Compilation Techniques for Fine and Medium

Grain Parallelism, Orlando, Florida, January 1993, pp. 20–22.

Approved for Public Release; Distribution Unlimited.

 30

http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

LIST OF ACRONYMS

ADT Abstract Data Type

API Application Programming Interface

BMP Bitmap Image File

CALDF CAL Dataflow

CFDF Core Functional Dataflow

Cg C for Graphics

CSDF Cyclo-static Dataflow

CUDA Compute Unified Device Architecture

DIF Dataflow Interchange Format

DIFML Dataflow Interchange Format Markup Language

DSP Digital Signal Processing

EC Execution Context

FIFO First-in-first-out

GPP General Purpose Processor

GPU Graphics Processing Unit

HDL Hardware Description Language

HTML HyperText Markup Language

MDSDF Multidimensional Synchronous Dataflow

NOP No Operation

Approved for Public Release; Distribution Unlimited.

 31

NVCC NVIDIA CUDA Compiler

OpenCL Open Computing Language

OpenGL Open Graphics Library

PSDF Parameterized Synchronous Dataflow

SDF Synchronous Dataflow

SDK Software Development Kit

SGML the Standard Generalized Markup Language

TC Topological Context

TDIF Targeted DIF

TDIFSyn TDIF Synthesis

TDL The DIF Language

TDP The DIF Package

XML Extensible Markup Language

Approved for Public Release; Distribution Unlimited.

 32

